Advanced Topics =============== Advanced topics for more customized training. Initial control points ---------------------- You can provide initial control points with a file. The file should contain a list of control points. The file format should be pickled pytorch (``.pt``), comma-separated values (``.csv``), tab-separated values (``.tsv``), JSON (``.json``), or YAML (``.yml`` or ``.yaml``). Pickled PyTorch ^^^^^^^^^^^^^^^ See PyTorch documentation for details: - https://pytorch.org/docs/stable/generated/torch.save.html#torch.save - https://pytorch.org/docs/stable/generated/torch.load.html#torch.load CSV ^^^ .. code-block:: csv "(2, 0)", 0.0, 0.1 "(1, 1)", 1.0, 1.1 "(0, 2)", 2.0, 2.1 TSV ^^^ .. code-block:: tsv "(2, 0)" 0.0 0.1 "(1, 1)" 1.0 1.1 "(0, 2)" 2.0 2.1 JSON ^^^^ .. code-block:: json { "(2, 0)": [0.0, 0.1], "(1, 1)": [1.0, 1.1], "(0, 2)": [2.0, 2.1] } YAML ^^^^ .. code-block:: yaml "(2, 0)": [0.0, 0.1] "(1, 1)": [1.0, 1.1] "(0, 2)": [2.0, 2.1] Partial training ---------------- Funciton ``fit()`` provides some argments for partial training, i.e., train some of control points while the others are fixed. .. code-block:: python import torch import torch_bsf ts = torch.tensor( # parameters on a simplex [ [8/8, 0/8], [7/8, 1/8], [6/8, 2/8], [5/8, 3/8], [4/8, 4/8], [3/8, 5/8], [2/8, 6/8], [1/8, 7/8], [0/8, 8/8], ] ) xs = 1 - ts * ts # values corresponding to the parameters # Initialize 2D control points of a Bezier triangle of degree 3 init = { # index: value (3, 0): [0.0, 0.1], (2, 1): [1.0, 1.1], (1, 2): [2.0, 2.1], (0, 3): [3.0, 3.1], } # Or, generate random control points in [0, 1) init = torch_bsf.bezier_simplex.rand(n_params=2, n_values=2, degree=3) # Or, load control points from a file init = torch_bsf.bezier_simplex.load("control_points.yml") # Train the edge of a Bezier curve while its vertices are fixed bs = torch_bsf.fit( params=ts, # input observations (training data) values=xs, # output observations (training data) init=init, # initial values of control points fix=[[3, 0], [0, 3]], # fix vertices of the Bezier curve ) # Predict by the trained model t = [ [0.2, 0.8], [0.7, 0.3], ] x = bs(t) print(f"{t} -> {x}")